Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis.
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive paralysis due to the selective death of motor neurons of unknown causes. Increasing evidence indicates that Wnt signaling is altered in ALS. In this study, we focused on two non-canonical Wnt signaling components, atypical PKC (aPKC) and a Wnt receptor, Ryk, in a mouse model of ALS, SOD1 (G93A). aPKC mediates Wnt signaling to regulate growth cone guidance, axon differentiation and cell survival. Ryk is a Wnt repulsive receptor that regulates axon guidance and inhibits regeneration after spinal cord injury. aPKC expression was increased in motor neurons of the lumbar spinal cord in SOD1 (G93A) mice at both early and late stages. Interestingly, aPKC was co-localized with SOD1 in motor neuron cell bodies and extracellular aggregates, and aPKC-containing extracellular aggregates increased with disease progression. Biochemical fractionation showed that aPKC protein level was increased in the detergent-insoluble protein fraction in SOD1 (G93A) mice at late stage but decreased in the detergent-soluble fraction at symptomatic stage. These results suggest that aPKC may be sequestered in SOD1 aggregates, impairing its ability to protect motor neurons from death. Ryk expression was also increased in the motor neurons and the white matter in the ventral lumbar spinal cord of mutant SOD1 mice with a peak at early stage. These observations indicate that Wnt/aPKC and Wnt/Ryk signaling are altered in SOD1 (G93A) mice, suggesting that changed Wnt signaling may contribute to neurodegeneration in ALS.
منابع مشابه
Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis
Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...
متن کاملRepeated Administration of Baclofen Modulates TRPV-1 Channel Expression by PKC Pathway in Dorsal Root Ganglia of Spinal Cord in Morphine Tolerance Model of Rats
Background: Tolerance and dependence to anti-nociceptive effect of morphine restricted its use. Nowadays co-administration of morphine and other drugs suggests diminishing this tolerance. Baclofen is one of the drugs that may be beneficial in the attenuation of tolerance to morphine. Studies have shown that changes in transient receptor potential vanilloid type 1 (TRPV-1) expression during admi...
متن کاملDownregulation of the potassium chloride cotransporter KCC2 in vulnerable motoneurons in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.
The balance between excitatory and inhibitory synaptic inputs is critical for the physiological control of motoneurons. The maintenance of a low-intracellular chloride concentration by the potassium chloride cotransporter 2 (KCC2) is essential for the efficacy of fast synaptic inhibition of mature motoneurons in response to the activation of ionotropic γ-aminobutyric acid A and glycine receptor...
متن کاملMS14 Down-regulates Lipocalin2 Expression in Spinal Cord Tissue in an Animal Model of Multiple Sclerosis in female C57BL/6
Background: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis, which is a demyelinating and an inflammatory disease of central nervous system. Recent studies have established that some molecules such as Lipocaline2 (LCN2), which expresses during inflammatory conditions, play an important role in EAE pathogenesis and might involve in its treatment process. ...
متن کاملDifferential expression and alternative splicing of genes in lumbar spinal cord of an amyotrophic lateral sclerosis mouse model.
Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset neurodegenerative diseases, with progressive paralysis and muscle atrophy. The exact pathogenic mechanism remains unknown, but recent evidence suggests that differential gene expression and gene splicing may play a significant role. We used Affymetrix GeneChip Mouse Exon 1.0 ST Array to investigate the expression profilin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental neurobiology
دوره 74 8 شماره
صفحات -
تاریخ انتشار 2014